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Overview of the

Need for Data Warehousing



First Let’s Get This Straight…

Data Warehousing is not dead!

Data warehousing can be “uncool” but it 

doesn’t have to be if you adopt modern data 

warehousing concepts & technologies such as:

 Data lake

 Hadoop

 Real-time

 Large data volume

 Data virtualization

 Hybrid & cloud

 Automation

 Bimodal environments



Transaction System vs. Data Warehouse

Data Warehouse

Goal:

 Informational and analytical

 “Reads”

Scope:

Integrate data from multiple systems

Example Objectives:

 Identify lowest-selling products

 Analyze margin per customer

OLTP

Goal:

 Operational transactions

 “Writes”

Scope:

One database system

Example Objectives:

 Process a customer order

 Generate an invoice



DW+BI Systems Used to Be Fairly Straightforward
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DW+BI Systems Have Grown in Complexity
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Data Warehouse 

Design Principles



3 Primary Architectural Areas

Enterprise Data 
Warehouse

OLAP 
Semantic 

Layer

Data Acquisition Data Storage

Data Delivery

Reporting Tool 
of Choice



Integrate Data from Multiple Sources

Enterprise Data 
Warehouse

Source Systems

Objective:

Data is inherently more 

valuable once it is integrated.

Example:

Full view of a customer:

o Sales activity + 

o Delinquent invoices +

o Support/help requests



Use of Staging Environment

Enterprise Data Warehouse

Star 

Schema
Staging

Source Systems

Transformations

Staging Objectives: 

 Reduce load on 

source system

 No changes to 

source format

 A “kitchen area”

 Snapshot of 

source data for 

troubleshooting
New trend: use of a 

data lake as the DW 

staging environment



Usage of a Star Schema

Dimension Table

Provides the descriptive 

context – attributes with the 

who, what, when, why, or how

Fact Table

Fact tables contain the 

numeric, quantitative data 

(aka measures)



Benefits of a Star Schema

Optimal for known reporting scenarios

Denormalized structure, structured 

around business logic, is good for 

performance & consistency

Usability:

 Stable, predictable environment

 Less joins, easier navigation

 Friendly, recognizable names

 History retention

 Integrate multiple systems

Decoupled from source systems:  surrogate keys which have no 

intrinsic meaning



Challenges of a Star Schema

Requires up-front analysis         

(“schema on write”)

Difficult to handle new & unpredictable 

or exploratory scenarios

Increasing volumes of data 

Reducing windows of time for data loads (near real-time is challenging)

Data quality issues are often surfaced in the reporting layer

Not practical to contain *all* of the data all the time



Declare Grain of Each Table



Store the Lowest Level Detail You Have

Drill-down behavior:

Sales Totals

East Region

Customer A $ 25

Customer B             $  75

Customer C             $100

$200

Sales Totals

US Customers $1,000

European Customers   $   750

Sales Totals

US Customers

East Region $   200

West Region $   800

$1,000

You may be forced to only store 

aggregated data for extremely high data 

volumes. Or, you may choose an 

alternative technology (like a data lake, a 

NoSQL database, or Hadoop).

Sales Detail

Customer C

Invoice 123 $ 10

Invoice 456 $  10

Invoice 789 $    5

$  25



Dimension Design



Dimension Tables
Dimension tables:  provide the descriptive context – attributes with the who, what, 

when, why, or how. They should always include friendly names & descriptions.

Dimension tables can contain:

Type of Column in a Dim Example

Attributes Customer Name

Non-additive numeric value Customer Value to Acquisition Cost Ratio

Numeric value used *only* for 

filtering or grouping (usually 

accompanied by a “band of 

ranges”)

Customer Satisfaction %  

Customer Satisfaction Range
90%-100%

80-89%

Less than 80%

Dimension tables should *not* contain aggregatable numeric values (measures).



Types of Dimension Tables

Type of Dim Table Description

Type 0 Values cannot change (ex: DimDate).

Type 1 Any value which changes is overwritten; no history is  

preserved. 

Type 2 aka Slowly 

Changing Dimension

Certain important values which change generate a new 

row which is effective-dated. (Not all columns should be 

type 2 - certain columns can be type 1.)

Type 6 Hybrid of type 1 and 2 which includes a new column for 

the important values, as well as a new row.

Most common types of dimensions:

Types 3, 4, 5, and 7 do exist, but are less commonly utilized.



Type 1 Dimension

Original 

data:

Change to Customer Name occurs.  

Customer 

SK

Customer 

NK

Customer 

Name

AuditRow 

UpdateDate

1 ABC Brian Jones 6-4-2014

2 DEF Sally Walsh 12-2-2016

Customer 

SK

Customer 

NK

Customer 

Name

AuditRow 

UpdateDate

1 ABC Brian Jones 6-4-2014

2 DEF Sally Baker 10-1-2015

Updated 

data:



Type 2 Dimension

Original 

data:

Change to Customer Name occurs.  

Customer 

SK

Customer 

NK

Customer 

Name

AuditRow 

Effective 

Date

AuditRow 

Expired

Date

AuditRow 

IsCurrent

1 ABC Brian Jones 6-4-2014 12-31-9999 1

2 DEF Sally Baker 10-1-2015 12-2-2016 0

3 DEF Sally Walsh 12-3-2016 12-31-9999 1

Customer 

SK

Customer 

NK

Customer 

Name

AuditRow 

Effective 

Date

AuditRow 

Expired

Date

AuditRow 

IsCurrent

1 ABC Brian Jones 6-4-2014 12-31-9999 1

2 DEF Sally Baker 10-1-2015 12-31-9999 1

Updated 

data:



Type 6 Dimension

Original 

data:

Change to Customer Name occurs.  

Customer 

SK

Customer 

NK

Customer 

Name

Customer 

Name 

Current

AuditRow 

Effective 

Date

AuditRow 

Expired

Date

Audit 

RowIs 

Current

1 ABC Brian 

Jones

Brian 

Jones

6-4-2014 12-31-9999 1

2 DEF Sally Baker Sally Baker 10-1-2015 12-31-9999 1

Updated 

data:
Customer 

SK

Customer 

NK

Customer 

Name

Customer 

Name 

Current

Audit Row 

Effective 

Date

AuditRow 

Expired 

Date

Audit 

RowIs 

Current

1 ABC Brian Jones Brian Jones 6-4-2014 12-31-9999 1

2 DEF Sally Baker Sally Walsh 10-1-2015 12-2-2016 0

3 DEF Sally Walsh Sally Walsh 12-3-2016 12-31-9999 1



Conformed Dimension

A conformed dimension 

reuses the same dimension 

across numerous fact tables:  

critical for unifying data from 

various sources.

Conformed dimensions 

provide significant value with 

‘drill across’ functionality, 

and provide a consistent

user experience.

DimCustomer

FactSales 

Invoice
FactAccounts 

Receivable

FactCustomer 

SupportRequest

Dim

Dim Dim

Dim

Dim

Dim

DimDim



Role-Playing Dimension

A role-playing dimension utilizes the same conformed dimension. 

Objective is to avoid creating multiple physical copies of the same 

dimension table.

FactSalesInvoice

DateSK_InvoiceDate

DateSK_PaymentDueDate

SalesAmount

…

DimDate

DateSK

Date

Month

Quarter

Year

…

SELECT 

FSI.SalesAmount

,InvoiceDate = DtInv.Date

,PymtDueDate = DtDue.Date

FROM FactSalesInvoice AS FSI

INNER JOIN DimDate AS DtInv

ON FSI.DateSK_InvoiceDate = DtInv.DateSK

INNER JOIN DimDate AS DtDue

ON FSI.DateSK_PaymentDueDate = DtDue.DateSK



Hierarchies

Hierarchies are extremely useful for handling rollups, and for drill-down & 

drill-through behavior.

Date Hierarchy

Year

Quarter

Month

Day

Geography Hierarchy

Country

State or Province

City

Address



Dimension Design                                

Inline syntax format works in the SSDT 

database project which requires 

“declarative development.”

No alters beneath the create.



Dimension Design                                

Golden rule: a 

column exists in one 

and only one place 

in the DW.

Remove the Dim or Fact prefix 

from user access layers.



Dimension Design                                Use a naming 

convention to easily 

identify surrogate 

keys & natural keys

Use the smallest datatypes you 

can use without risk of overflows

Make careful 

decisions on the 

use of varchar 

vs. nvarchar



Dimension Design                                

Avoid numeric data types for non-

aggregatable columns such as 

Customer Number. 

Also useful for retaining leading 0s 

or for international zip codes.

Alternatively, 

could be 

converted in a 

view or semantic 

layer. Objective is 

to avoid reporting 

tools trying to 

sum.



Dimension Design                                

Avoid ‘Or Is Null’ 

issues for attributes 

which are commonly 

used in predicates.

Default constraints are present 

for non-nullable columns.      

In a DW, defaults are optional 

if ETL strictly controls all data 

management. *Don’t let SQL 

Server auto-name constraints.



Dimension Design                                

A ‘Current’ column (which is the same 

across all rows in a Type 6 dimension) is 

helpful for columns commonly used in 

reporting so all history shows the 

newest value. 

When designing a Type 2 

(or 6) dimension, only 

choose the most important 

columns to generate a new 

row when it changes.



Dimension Design                                

Optionally, can store variations of 

concatenated columns such as:

Name (Number)

Number - Name

Description (Code)

Code - Description

Could also be derived in views 

or semantic layer. Or, computed 

columns could be used.



Dimension Design                                Standard audit 

columns.

The ‘Audit’ prefix 

makes it clear they 

are generated in the 

DW not the source.

Additional columns if the 

Type 2 historical change 

tracking is occurring.



Dimension Design                                

Primary key based on the surrogate key. 

This is also our clustered index.

All key & index suggestions 

are merely a starting point. As 

your DW grows, you might 

have to refine your strategy 

depending on ETL.



Dimension Design                                

Unique constraint, based on natural keys, defines the 

“grain” of the table. It also helps identify data quality 

issues & is very helpful to the SQL Server query optimizer.

The unique constraint 

implicitly creates a unique 

index as well, which will assist 

with lookup operations.



Dimension Design                                
Use of non-Primary filegroups.

Ex: Dimensions, Facts,    

Staging, Other.



Fact Design



Fact Tables

Fact tables contain the numeric, quantitative data (aka measures).

Typically one fact table per distinct business process. 

Exception: “consolidated” facts (aka “merged” facts) such as actual vs. forecast 

which require the same granularity and are frequently analyzed together.

Fact tables can contain:

Type of Column in a Fact Example

Measures Sales Amount

Foreign keys to dimension table 3392 (meaningless integer surrogate key)

Degenerate dimension Order Number



Types of Fact Tables

Type of Fact Table Description Example

Transaction Fact An event at a point in time FactSalesInvoice

Periodic Snapshot Fact Summary at a point in time FactARBalanceDaily

Accumulating Snapshot 

Fact

Summary across the lifetime of 

an event

FactStudentApplication

Timespan Tracking Fact Effective-dated rows FactCapitalAssetBalance

Most common types of facts:

Type of Fact Table Description Example

Factless Fact Table Recording when an event did 

not occur

FactPromotionNoSales

Aggregate Facts Rollups, usually to improve 

reporting speed

FactSalesInvoiceSummary

Other facts:



Fact Design                     

One fact table per distinct 

business process.

Even if all of the SKs are the 

same, avoid combining fact 

tables for unrelated business 

processes.



Fact Design                     The combination of SKs 

might dictate the grain of the 

fact table, but it may not.



Fact Design                     

Default equates to the ‘unknown member’ row. 

Some data modelers prefer the 

unknown member row to have its key 

assigned randomly. 



Fact Design                     Optionally can use two types of 

Date defaults: one in the past, 

one in the future. Helps with 

‘Less than’ or ‘Greater than’ 

predicates.

It’s also fine for a date SK to be an actual date 

datatype instead of an integer.



Fact Design                     

Foreign key constraints mitigate 

referential integrity issues.

Having a PK in a fact is personal 

preference. Usually you don’t want 

a clustered index on it though.



Fact Design                     

Measures are sparse, 

therefore nullable.

0s are not stored except in a 

factless fact table.



Fact Design                              

Natural key in a fact violates Kimball rules. 

However, they are helpful for:

(1)Re-assigning SK if a lookup issue occurred 

and an unknown member got assigned.

(2)Allows unique constraint on the NKs for 

ensuring data integrity. 

**Never (ever!) let the NKs be exposed or used 

for anything besides ETL. And only create 

minimum # of NKs to identify the row.**



Fact Design                              

Unique constraint, based on natural keys, 

defines the “grain” of the table & helps 

identify data quality issues. 

The unique constraint 

implicitly creates a unique 

index as well, which will assist 

with lookup operations.



Fact Design                              
The clustered index is 

usually on a date.

Compression set on the 

clustered index rather 

than the table.



Fact Design                              Nonclustered index on each 

surrogate key. Useful for 

smaller fact tables (which 

don’t justify a clustered 

columnstore index).



When to Use 

Columnstore Indexes or Partitioning



Handling Larger Fact Tables

Table 

Partitioning

Clustered 

Columnstore 

Index

Useful for:

 Reducing data storage due to compression of 

redundant values

 Improving query times for large datasets

 Improving query times due to reduced I/O           

(ex: column elimination)

Useful for:

 Improving data load times due to partition switching

 Flexibility for maintenance on larger tables

 Improving query performance (possibly) due 

parallelism & partition elimination behavior



Clustered Columnstore Index

Rowstore:

Columnstore:

Simplified & conceptual

Reduced storage for low 

cardinality columns



Clustered Columnstore Index Simplified & conceptual

CCI most 

suitable for:

 Tables over 1 

million rows 

 Data structured in a denormalized star schema format (DW not OLTP)

 Support for analytical query workload which scans a large number of 

rows, and retrieves few columns

 Data which is not frequently updated (‘cold’ data not ‘hot’)

 Can selectively be used on insert-oriented workloads (ex: IoT)

(A nonclustered columnstore index targets analytical queries on an OLTP rather than a data warehouse.)



Partitioned Table
Useful for:

 Speeding up ETL processes
 Large datasets (50GB+)

 Small maintenance windows

 Use of a sliding window

 Storage of partitions on separate 

drives (filegroups)
 Older (cold) data on cheaper 

storage

 Historical data on read-only 

filegroup

 Speeding up queries (possibly)

 Partition elimination

 Parallelism

Table A

Partition 1

Current 

Data

Partition 2

Current-1 

Data

Partition 3

Current-2 

Data

Filegroup 

1

Filegroup 

2

Filegroup 

3

High-end 

storage

Slower 

storage



Partitioned View
Useful for:

 Query performance (similar to 

partitioned table)

 Sharing of a single table (“partition”) 

across multiple views

 Displaying info from > 1 database or 

server (via a linked server)

Requires “Check” constraints 

on the underlying tables 

(usually on a date column)

Requires “Check” constraints 

on the underlying tables 

(usually on a date column)



Data Warehouse Tips



Handling Many-to-Many Scenarios

Bridge 

CustomerAccount

DimCustomer

Classic many-to-many scenarios:

 A sales order is for many products, and a product is on many 

sales orders

 A customer has multiple bank accounts, and a bank account 

belongs to multiple customers

DimAccount



Ways to Track History in a DW

Most common options for tracking history:

1. Slowly changing dimension

2. Fact snapshot tables

3. Timestamp tracking fact

New option in SQL Server 2016:

4. Temporal data tables   Not a full replacement for slowly changing

dimensions, but definitely useful for auditing



“Smart Dates” vs. “Dumb Dates” in a DW
DimCustomer

CustomerSK

CustomerNK

CustomerAcquisitionDate

…

A “dumb date” is just an attribute:

A “smart date” relates to a full-

fledged Date dimension which 

allows significant time analysis 

capabilities:

DimCustomer DimDate

FactCustomerMetrics

CustomerSK

DateSK_CustomerAcquisition

…



Handling of Nulls in Dimensions

Rule of thumb is to avoid nulls in attribute columns.

What happens with this:

SELECT CustomerType WHERE CustomerType <> ‘Retail’

Too easy to forget:

SELECT CustomerType WHERE CustomerType <> ‘Retail’

OR CustomerType IS NULL

Remember the 

NOT NULL and 

default 

constraints



Handling of Nulls in Facts

Best practice is to avoid nulls in foreign keys. (However, nulls are ok for 

a measure.)

By using an ‘unknown member’ relationship to the dimension, you can:

 Safely do inner joins

 Allow the fact record to be inserted & meet referential integrity

 Allow the fact record to be inserted which avoids understating 

measurement amounts

Ex:  Just because one key is unknown, such as an EmployeeSK for who 

rang up the sale, should the sale not be counted?



Views Customized for Different Purposes



Recap of Important DW Design Principles
Staging as a “kitchen” area

Integrate data from multiple systems to increase its value

Denormalize the data into a star schema

A column exists in one and only one place in the star schema

Avoid snowflake design most of the time

Use surrogate keys which are independent from source systems

Use conformed dimensions

Know the grain of every table

Have a strategy for handling changes, and for storage of history

Store the lowest level of detail that you can

Use an ‘unknown member’ to avoid understating facts

Transform the data, but don’t “fix” it in the DW

Structure your dimensional model around business processes



Recap of Important DW Design Principles
Design facts around a single business event

Always use friendly names & descriptions

Use an explicit date dimension in a “role-playing” way

Utilize bridge tables to handle many-to-many scenarios

Plan for complexities such as:

Header/line data

Semi-additive facts

Multiple currencies

Multiple units of measure

Alternate hierarchies and calculations per business units

Allocation of measures in a snowflake design

Reporting of what didn’t occur (factless facts)

Dimensional only analysis



SSDT “Database Project” Tips



Database Project Format
This project is 

organized by:

1 – Schema 

(or Category)

2 – Object Type

3 – Object



Building the Database Project

Build frequently 

to verify no 

errors or 

missing 

references

Nearly all 

objects should 

be set to Build



Database Design Pre-sized files

Auto-grow 

allowed in sizeable 

increments        

(just in case)

Separate Data 

& Log drive.

Separate disks 

to locate data 

& log



Unknown Member Row
Build action = 

none since this is 

DML 

The SK reference in a fact table if the real value 

is unknown or does not exist. 

Identity_Insert does 

require elevated 

permissions 



Manually Maintained Data
Maintain a DML script in a Lookup (LKP) table instead of hard-coding 

in the ETL.

Build action = 

none since this is 

DML 



Schema Compare

Settings to exclude permissions, 

users, etc + options to ignore

Saved settings



Schema Compare Options



Project Properties Option to 

generate error 

during build



Schema Compare Generates a script to use 

for deployment
Usually 

don’t

want to 

let the 

target 

update 

directly



Data Compare

Basic functionality to 

compare data between 

two tables -- schema 

must match.



Project Snapshot

Snapshot of the database 

schema at a point in time 

(ex: major release points).

Store the 

.dacpac file in 

the project if 

desired



Planning Future Growth

of the Data Warehouse



Modern /DW/BI/Analytics Systems

Third Party 
Data

Enterprise Data 
Warehouse

Reporting Tool 
of Choice

Organizational 
Data

Devices & 
Sensors

Social Media

Demographics 
Data

Near-Real-Time Monitoring

Data Lake

Curated Data

Analytics 
Sandbox

Active Archive

Data 
Marts

OLAP 
Semantic 

Layer

Operational 
Data Store

Hadoop Machine 
Learning

Streaming 
Data

Batch 
ETL

Raw Data

Data Science

Advanced Analytics

Historical 
Analytical 
Reporting

Operational 
Reporting

Mobile

Self-Service 
Reports & Models

Master 
Data



Growing your DW/BI/Analytics Environment

Advanced 

Analytics

Modern DW

Multi-Platform 

Architecture

Real-Time 

Reporting

Cloud & 

Hybrid 

Platforms

Agile, 

Nimble

Solutions

Self-

Service 

BI



Achieving Extensibility in a DW

Design with change in mind.  Ex: Create a lookup table with 

code/descriptions, or implement in a view, rather than hard-coding in ETL.

Plan for a hybrid environment with multiple architectures.

Introduce conformed dimensions first whenever possible.

Try to avoid isolated “stovepipe” implementations unless the isolation 

is absolutely intended.

Conduct active prototyping sessions with business users to flush out 

requirements. A data modeling tool like Power BI works well for this.



Achieving Extensibility in a DW

Be prepared to do some refactoring along the way. Ex: converting an 

attribute to be a conformed dimension.

First implementation: FactSalesInvoice
DimCustomer

CustomerName

CustomerRegion

…

DimRegion

DimCustomer

FactSalesInvoice

Updated in a later iteration:

FactWarrantyRequest



Achieving Extensibility in a DW
Introducing new measures:

• Can be a new column in a fact table as long as it’s the same grain & the 

same business process

Introducing new attributes:

• Can be a new column in a dimension, or

• Can be via a new foreign key in a fact table as long as it doesn’t affect 

the grain

Agility for the things that usually require the most time investment:

• Data modeling

• ETL processes

• Data quality



Achieving Extensibility in a DW

DW ReportsOLAP

Reusability Downstream Speed of Change Implemented

Consider using an OLAP cube or in-memory model (like Analysis 

Services) for:

• Summary data (as opposed to summary tables in your DW)

• Year-to-Date type of calculations

• Year-over-Year type of calculations

• Aggregate level calculations (as opposed to row-by-row calculations)



Modern DW: Important Concepts to Know

Using the most 

effective data 

storage technology 

to handle different 

data storage needs

Polygot 

Persistence

Schema on 

Read

Data structure is 

applied at query 

time rather than 

when the data is 

initially stored

Lambda 

Architecture

Data processing 

architecture 

which supports 

large amounts of 

data via a speed 

layer, batch layer, 

and serving layer



Recommended Resources

Read 

First

Read 

Second
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