
Melissa Coates
BI Architect, SentryOne

sentryone.com

Blog: sqlchick.com

Twitter: @sqlchick

Fundamentals of Designing
a Data Warehouse

Sensible techniques for developing a data warehousing

environment which is relevant, agile, and extensible

Presentation content last updated: 2/15/2017

Agenda
1. Overview of the Need for Data Warehousing

2. DW Design Principles

3. Dimension Design

4. Fact Design

5. When to Use Columnstore or Partitioning

6. DW Tips

7. SSDT ‘Database Project’ Tips

8. Planning Future Growth of the DW

Fundamentals of Designing
a Data Warehouse

All syntax shown is from

SQL Server 2016.

Screen shots are from

SQL Server Data Tools in

Visual Studio 2015.

 ETL patterns and techniques

 Source control

 Deployment practices

 Master data management

 Data quality techniques

 Semantic layer, OLAP, cubes

 Front-end reporting

 Security

 Tuning & monitoring

 Automation techniques

Out of Scope

Fundamentals of Designing
a Data Warehouse

Overview of the

Need for Data Warehousing

First Let’s Get This Straight…

Data Warehousing is not dead!

Data warehousing can be “uncool” but it

doesn’t have to be if you adopt modern data

warehousing concepts & technologies such as:

 Data lake

 Hadoop

 Real-time

 Large data volume

 Data virtualization

 Hybrid & cloud

 Automation

 Bimodal environments

Transaction System vs. Data Warehouse

Data Warehouse

Goal:

 Informational and analytical

 “Reads”

Scope:

Integrate data from multiple systems

Example Objectives:

 Identify lowest-selling products

 Analyze margin per customer

OLTP

Goal:

 Operational transactions

 “Writes”

Scope:

One database system

Example Objectives:

 Process a customer order

 Generate an invoice

DW+BI Systems Used to Be Fairly Straightforward

Third Party
Data

Reporting Tool
of Choice

OLAP
Semantic

Layer

Batch ETL Enterprise Data
Warehouse

Operational
Data Store

Data
Marts

Operational
Reporting

Historical
Analytical
Reporting

Organizational
Data (Sales,

Inventory, etc)

Master
Data

DW+BI Systems Have Grown in Complexity

Third Party
Data

Enterprise Data
Warehouse

Reporting Tool
of Choice

Organizational
Data

Devices &
Sensors

Social Media

Demographics
Data

Near-Real-Time Monitoring

Data Lake

Curated Data

Analytics
Sandbox

Active Archive

Data
Marts

OLAP
Semantic

Layer

Operational
Data Store

Hadoop Machine
Learning

Streaming
Data

Batch
ETL

Raw Data

Data Science

Advanced Analytics

Historical
Analytical
Reporting

Operational
Reporting

Mobile

Self-Service
Reports & Models

Master
Data

Data Warehouse

Design Principles

3 Primary Architectural Areas

Enterprise Data
Warehouse

OLAP
Semantic

Layer

Data Acquisition Data Storage

Data Delivery

Reporting Tool
of Choice

Integrate Data from Multiple Sources

Enterprise Data
Warehouse

Source Systems

Objective:

Data is inherently more

valuable once it is integrated.

Example:

Full view of a customer:

o Sales activity +

o Delinquent invoices +

o Support/help requests

Use of Staging Environment

Enterprise Data Warehouse

Star

Schema
Staging

Source Systems

Transformations

Staging Objectives:

 Reduce load on

source system

 No changes to

source format

 A “kitchen area”

 Snapshot of

source data for

troubleshooting
New trend: use of a

data lake as the DW

staging environment

Usage of a Star Schema

Dimension Table

Provides the descriptive

context – attributes with the

who, what, when, why, or how

Fact Table

Fact tables contain the

numeric, quantitative data

(aka measures)

Benefits of a Star Schema

Optimal for known reporting scenarios

Denormalized structure, structured

around business logic, is good for

performance & consistency

Usability:

 Stable, predictable environment

 Less joins, easier navigation

 Friendly, recognizable names

 History retention

 Integrate multiple systems

Decoupled from source systems: surrogate keys which have no

intrinsic meaning

Challenges of a Star Schema

Requires up-front analysis

(“schema on write”)

Difficult to handle new & unpredictable

or exploratory scenarios

Increasing volumes of data

Reducing windows of time for data loads (near real-time is challenging)

Data quality issues are often surfaced in the reporting layer

Not practical to contain *all* of the data all the time

Declare Grain of Each Table

Store the Lowest Level Detail You Have

Drill-down behavior:

Sales Totals

East Region

Customer A $ 25

Customer B $ 75

Customer C $100

$200

Sales Totals

US Customers $1,000

European Customers $ 750

Sales Totals

US Customers

East Region $ 200

West Region $ 800

$1,000

You may be forced to only store

aggregated data for extremely high data

volumes. Or, you may choose an

alternative technology (like a data lake, a

NoSQL database, or Hadoop).

Sales Detail

Customer C

Invoice 123 $ 10

Invoice 456 $ 10

Invoice 789 $ 5

$ 25

Dimension Design

Dimension Tables
Dimension tables: provide the descriptive context – attributes with the who, what,

when, why, or how. They should always include friendly names & descriptions.

Dimension tables can contain:

Type of Column in a Dim Example

Attributes Customer Name

Non-additive numeric value Customer Value to Acquisition Cost Ratio

Numeric value used *only* for

filtering or grouping (usually

accompanied by a “band of

ranges”)

Customer Satisfaction %

Customer Satisfaction Range
90%-100%

80-89%

Less than 80%

Dimension tables should *not* contain aggregatable numeric values (measures).

Types of Dimension Tables

Type of Dim Table Description

Type 0 Values cannot change (ex: DimDate).

Type 1 Any value which changes is overwritten; no history is

preserved.

Type 2 aka Slowly

Changing Dimension

Certain important values which change generate a new

row which is effective-dated. (Not all columns should be

type 2 - certain columns can be type 1.)

Type 6 Hybrid of type 1 and 2 which includes a new column for

the important values, as well as a new row.

Most common types of dimensions:

Types 3, 4, 5, and 7 do exist, but are less commonly utilized.

Type 1 Dimension

Original

data:

Change to Customer Name occurs.

Customer

SK

Customer

NK

Customer

Name

AuditRow

UpdateDate

1 ABC Brian Jones 6-4-2014

2 DEF Sally Walsh 12-2-2016

Customer

SK

Customer

NK

Customer

Name

AuditRow

UpdateDate

1 ABC Brian Jones 6-4-2014

2 DEF Sally Baker 10-1-2015

Updated

data:

Type 2 Dimension

Original

data:

Change to Customer Name occurs.

Customer

SK

Customer

NK

Customer

Name

AuditRow

Effective

Date

AuditRow

Expired

Date

AuditRow

IsCurrent

1 ABC Brian Jones 6-4-2014 12-31-9999 1

2 DEF Sally Baker 10-1-2015 12-2-2016 0

3 DEF Sally Walsh 12-3-2016 12-31-9999 1

Customer

SK

Customer

NK

Customer

Name

AuditRow

Effective

Date

AuditRow

Expired

Date

AuditRow

IsCurrent

1 ABC Brian Jones 6-4-2014 12-31-9999 1

2 DEF Sally Baker 10-1-2015 12-31-9999 1

Updated

data:

Type 6 Dimension

Original

data:

Change to Customer Name occurs.

Customer

SK

Customer

NK

Customer

Name

Customer

Name

Current

AuditRow

Effective

Date

AuditRow

Expired

Date

Audit

RowIs

Current

1 ABC Brian

Jones

Brian

Jones

6-4-2014 12-31-9999 1

2 DEF Sally Baker Sally Baker 10-1-2015 12-31-9999 1

Updated

data:
Customer

SK

Customer

NK

Customer

Name

Customer

Name

Current

Audit Row

Effective

Date

AuditRow

Expired

Date

Audit

RowIs

Current

1 ABC Brian Jones Brian Jones 6-4-2014 12-31-9999 1

2 DEF Sally Baker Sally Walsh 10-1-2015 12-2-2016 0

3 DEF Sally Walsh Sally Walsh 12-3-2016 12-31-9999 1

Conformed Dimension

A conformed dimension

reuses the same dimension

across numerous fact tables:

critical for unifying data from

various sources.

Conformed dimensions

provide significant value with

‘drill across’ functionality,

and provide a consistent

user experience.

DimCustomer

FactSales

Invoice
FactAccounts

Receivable

FactCustomer

SupportRequest

Dim

Dim Dim

Dim

Dim

Dim

DimDim

Role-Playing Dimension

A role-playing dimension utilizes the same conformed dimension.

Objective is to avoid creating multiple physical copies of the same

dimension table.

FactSalesInvoice

DateSK_InvoiceDate

DateSK_PaymentDueDate

SalesAmount

…

DimDate

DateSK

Date

Month

Quarter

Year

…

SELECT

FSI.SalesAmount

,InvoiceDate = DtInv.Date

,PymtDueDate = DtDue.Date

FROM FactSalesInvoice AS FSI

INNER JOIN DimDate AS DtInv

ON FSI.DateSK_InvoiceDate = DtInv.DateSK

INNER JOIN DimDate AS DtDue

ON FSI.DateSK_PaymentDueDate = DtDue.DateSK

Hierarchies

Hierarchies are extremely useful for handling rollups, and for drill-down &

drill-through behavior.

Date Hierarchy

Year

Quarter

Month

Day

Geography Hierarchy

Country

State or Province

City

Address

Dimension Design

Inline syntax format works in the SSDT

database project which requires

“declarative development.”

No alters beneath the create.

Dimension Design

Golden rule: a

column exists in one

and only one place

in the DW.

Remove the Dim or Fact prefix

from user access layers.

Dimension Design Use a naming

convention to easily

identify surrogate

keys & natural keys

Use the smallest datatypes you

can use without risk of overflows

Make careful

decisions on the

use of varchar

vs. nvarchar

Dimension Design

Avoid numeric data types for non-

aggregatable columns such as

Customer Number.

Also useful for retaining leading 0s

or for international zip codes.

Alternatively,

could be

converted in a

view or semantic

layer. Objective is

to avoid reporting

tools trying to

sum.

Dimension Design

Avoid ‘Or Is Null’

issues for attributes

which are commonly

used in predicates.

Default constraints are present

for non-nullable columns.

In a DW, defaults are optional

if ETL strictly controls all data

management. *Don’t let SQL

Server auto-name constraints.

Dimension Design

A ‘Current’ column (which is the same

across all rows in a Type 6 dimension) is

helpful for columns commonly used in

reporting so all history shows the

newest value.

When designing a Type 2

(or 6) dimension, only

choose the most important

columns to generate a new

row when it changes.

Dimension Design

Optionally, can store variations of

concatenated columns such as:

Name (Number)

Number - Name

Description (Code)

Code - Description

Could also be derived in views

or semantic layer. Or, computed

columns could be used.

Dimension Design Standard audit

columns.

The ‘Audit’ prefix

makes it clear they

are generated in the

DW not the source.

Additional columns if the

Type 2 historical change

tracking is occurring.

Dimension Design

Primary key based on the surrogate key.

This is also our clustered index.

All key & index suggestions

are merely a starting point. As

your DW grows, you might

have to refine your strategy

depending on ETL.

Dimension Design

Unique constraint, based on natural keys, defines the

“grain” of the table. It also helps identify data quality

issues & is very helpful to the SQL Server query optimizer.

The unique constraint

implicitly creates a unique

index as well, which will assist

with lookup operations.

Dimension Design
Use of non-Primary filegroups.

Ex: Dimensions, Facts,

Staging, Other.

Fact Design

Fact Tables

Fact tables contain the numeric, quantitative data (aka measures).

Typically one fact table per distinct business process.

Exception: “consolidated” facts (aka “merged” facts) such as actual vs. forecast

which require the same granularity and are frequently analyzed together.

Fact tables can contain:

Type of Column in a Fact Example

Measures Sales Amount

Foreign keys to dimension table 3392 (meaningless integer surrogate key)

Degenerate dimension Order Number

Types of Fact Tables

Type of Fact Table Description Example

Transaction Fact An event at a point in time FactSalesInvoice

Periodic Snapshot Fact Summary at a point in time FactARBalanceDaily

Accumulating Snapshot

Fact

Summary across the lifetime of

an event

FactStudentApplication

Timespan Tracking Fact Effective-dated rows FactCapitalAssetBalance

Most common types of facts:

Type of Fact Table Description Example

Factless Fact Table Recording when an event did

not occur

FactPromotionNoSales

Aggregate Facts Rollups, usually to improve

reporting speed

FactSalesInvoiceSummary

Other facts:

Fact Design

One fact table per distinct

business process.

Even if all of the SKs are the

same, avoid combining fact

tables for unrelated business

processes.

Fact Design The combination of SKs

might dictate the grain of the

fact table, but it may not.

Fact Design

Default equates to the ‘unknown member’ row.

Some data modelers prefer the

unknown member row to have its key

assigned randomly.

Fact Design Optionally can use two types of

Date defaults: one in the past,

one in the future. Helps with

‘Less than’ or ‘Greater than’

predicates.

It’s also fine for a date SK to be an actual date

datatype instead of an integer.

Fact Design

Foreign key constraints mitigate

referential integrity issues.

Having a PK in a fact is personal

preference. Usually you don’t want

a clustered index on it though.

Fact Design

Measures are sparse,

therefore nullable.

0s are not stored except in a

factless fact table.

Fact Design

Natural key in a fact violates Kimball rules.

However, they are helpful for:

(1)Re-assigning SK if a lookup issue occurred

and an unknown member got assigned.

(2)Allows unique constraint on the NKs for

ensuring data integrity.

**Never (ever!) let the NKs be exposed or used

for anything besides ETL. And only create

minimum # of NKs to identify the row.**

Fact Design

Unique constraint, based on natural keys,

defines the “grain” of the table & helps

identify data quality issues.

The unique constraint

implicitly creates a unique

index as well, which will assist

with lookup operations.

Fact Design
The clustered index is

usually on a date.

Compression set on the

clustered index rather

than the table.

Fact Design Nonclustered index on each

surrogate key. Useful for

smaller fact tables (which

don’t justify a clustered

columnstore index).

When to Use

Columnstore Indexes or Partitioning

Handling Larger Fact Tables

Table

Partitioning

Clustered

Columnstore

Index

Useful for:

 Reducing data storage due to compression of

redundant values

 Improving query times for large datasets

 Improving query times due to reduced I/O

(ex: column elimination)

Useful for:

 Improving data load times due to partition switching

 Flexibility for maintenance on larger tables

 Improving query performance (possibly) due

parallelism & partition elimination behavior

Clustered Columnstore Index

Rowstore:

Columnstore:

Simplified & conceptual

Reduced storage for low

cardinality columns

Clustered Columnstore Index Simplified & conceptual

CCI most

suitable for:

 Tables over 1

million rows

 Data structured in a denormalized star schema format (DW not OLTP)

 Support for analytical query workload which scans a large number of

rows, and retrieves few columns

 Data which is not frequently updated (‘cold’ data not ‘hot’)

 Can selectively be used on insert-oriented workloads (ex: IoT)

(A nonclustered columnstore index targets analytical queries on an OLTP rather than a data warehouse.)

Partitioned Table
Useful for:

 Speeding up ETL processes
 Large datasets (50GB+)

 Small maintenance windows

 Use of a sliding window

 Storage of partitions on separate

drives (filegroups)
 Older (cold) data on cheaper

storage

 Historical data on read-only

filegroup

 Speeding up queries (possibly)

 Partition elimination

 Parallelism

Table A

Partition 1

Current

Data

Partition 2

Current-1

Data

Partition 3

Current-2

Data

Filegroup

1

Filegroup

2

Filegroup

3

High-end

storage

Slower

storage

Partitioned View
Useful for:

 Query performance (similar to

partitioned table)

 Sharing of a single table (“partition”)

across multiple views

 Displaying info from > 1 database or

server (via a linked server)

Requires “Check” constraints

on the underlying tables

(usually on a date column)

Requires “Check” constraints

on the underlying tables

(usually on a date column)

Data Warehouse Tips

Handling Many-to-Many Scenarios

Bridge

CustomerAccount

DimCustomer

Classic many-to-many scenarios:

 A sales order is for many products, and a product is on many

sales orders

 A customer has multiple bank accounts, and a bank account

belongs to multiple customers

DimAccount

Ways to Track History in a DW

Most common options for tracking history:

1. Slowly changing dimension

2. Fact snapshot tables

3. Timestamp tracking fact

New option in SQL Server 2016:

4. Temporal data tables  Not a full replacement for slowly changing

dimensions, but definitely useful for auditing

“Smart Dates” vs. “Dumb Dates” in a DW
DimCustomer

CustomerSK

CustomerNK

CustomerAcquisitionDate

…

A “dumb date” is just an attribute:

A “smart date” relates to a full-

fledged Date dimension which

allows significant time analysis

capabilities:

DimCustomer DimDate

FactCustomerMetrics

CustomerSK

DateSK_CustomerAcquisition

…

Handling of Nulls in Dimensions

Rule of thumb is to avoid nulls in attribute columns.

What happens with this:

SELECT CustomerType WHERE CustomerType <> ‘Retail’

Too easy to forget:

SELECT CustomerType WHERE CustomerType <> ‘Retail’

OR CustomerType IS NULL

Remember the

NOT NULL and

default

constraints

Handling of Nulls in Facts

Best practice is to avoid nulls in foreign keys. (However, nulls are ok for

a measure.)

By using an ‘unknown member’ relationship to the dimension, you can:

 Safely do inner joins

 Allow the fact record to be inserted & meet referential integrity

 Allow the fact record to be inserted which avoids understating

measurement amounts

Ex: Just because one key is unknown, such as an EmployeeSK for who

rang up the sale, should the sale not be counted?

Views Customized for Different Purposes

Recap of Important DW Design Principles
Staging as a “kitchen” area

Integrate data from multiple systems to increase its value

Denormalize the data into a star schema

A column exists in one and only one place in the star schema

Avoid snowflake design most of the time

Use surrogate keys which are independent from source systems

Use conformed dimensions

Know the grain of every table

Have a strategy for handling changes, and for storage of history

Store the lowest level of detail that you can

Use an ‘unknown member’ to avoid understating facts

Transform the data, but don’t “fix” it in the DW

Structure your dimensional model around business processes

Recap of Important DW Design Principles
Design facts around a single business event

Always use friendly names & descriptions

Use an explicit date dimension in a “role-playing” way

Utilize bridge tables to handle many-to-many scenarios

Plan for complexities such as:

Header/line data

Semi-additive facts

Multiple currencies

Multiple units of measure

Alternate hierarchies and calculations per business units

Allocation of measures in a snowflake design

Reporting of what didn’t occur (factless facts)

Dimensional only analysis

SSDT “Database Project” Tips

Database Project Format
This project is

organized by:

1 – Schema

(or Category)

2 – Object Type

3 – Object

Building the Database Project

Build frequently

to verify no

errors or

missing

references

Nearly all

objects should

be set to Build

Database Design Pre-sized files

Auto-grow

allowed in sizeable

increments

(just in case)

Separate Data

& Log drive.

Separate disks

to locate data

& log

Unknown Member Row
Build action =

none since this is

DML

The SK reference in a fact table if the real value

is unknown or does not exist.

Identity_Insert does

require elevated

permissions

Manually Maintained Data
Maintain a DML script in a Lookup (LKP) table instead of hard-coding

in the ETL.

Build action =

none since this is

DML

Schema Compare

Settings to exclude permissions,

users, etc + options to ignore

Saved settings

Schema Compare Options

Project Properties Option to

generate error

during build

Schema Compare Generates a script to use

for deployment
Usually

don’t

want to

let the

target

update

directly

Data Compare

Basic functionality to

compare data between

two tables -- schema

must match.

Project Snapshot

Snapshot of the database

schema at a point in time

(ex: major release points).

Store the

.dacpac file in

the project if

desired

Planning Future Growth

of the Data Warehouse

Modern /DW/BI/Analytics Systems

Third Party
Data

Enterprise Data
Warehouse

Reporting Tool
of Choice

Organizational
Data

Devices &
Sensors

Social Media

Demographics
Data

Near-Real-Time Monitoring

Data Lake

Curated Data

Analytics
Sandbox

Active Archive

Data
Marts

OLAP
Semantic

Layer

Operational
Data Store

Hadoop Machine
Learning

Streaming
Data

Batch
ETL

Raw Data

Data Science

Advanced Analytics

Historical
Analytical
Reporting

Operational
Reporting

Mobile

Self-Service
Reports & Models

Master
Data

Growing your DW/BI/Analytics Environment

Advanced

Analytics

Modern DW

Multi-Platform

Architecture

Real-Time

Reporting

Cloud &

Hybrid

Platforms

Agile,

Nimble

Solutions

Self-

Service

BI

Achieving Extensibility in a DW

Design with change in mind. Ex: Create a lookup table with

code/descriptions, or implement in a view, rather than hard-coding in ETL.

Plan for a hybrid environment with multiple architectures.

Introduce conformed dimensions first whenever possible.

Try to avoid isolated “stovepipe” implementations unless the isolation

is absolutely intended.

Conduct active prototyping sessions with business users to flush out

requirements. A data modeling tool like Power BI works well for this.

Achieving Extensibility in a DW

Be prepared to do some refactoring along the way. Ex: converting an

attribute to be a conformed dimension.

First implementation: FactSalesInvoice
DimCustomer

CustomerName

CustomerRegion

…

DimRegion

DimCustomer

FactSalesInvoice

Updated in a later iteration:

FactWarrantyRequest

Achieving Extensibility in a DW
Introducing new measures:

• Can be a new column in a fact table as long as it’s the same grain & the

same business process

Introducing new attributes:

• Can be a new column in a dimension, or

• Can be via a new foreign key in a fact table as long as it doesn’t affect

the grain

Agility for the things that usually require the most time investment:

• Data modeling

• ETL processes

• Data quality

Achieving Extensibility in a DW

DW ReportsOLAP

Reusability Downstream Speed of Change Implemented

Consider using an OLAP cube or in-memory model (like Analysis

Services) for:

• Summary data (as opposed to summary tables in your DW)

• Year-to-Date type of calculations

• Year-over-Year type of calculations

• Aggregate level calculations (as opposed to row-by-row calculations)

Modern DW: Important Concepts to Know

Using the most

effective data

storage technology

to handle different

data storage needs

Polygot

Persistence

Schema on

Read

Data structure is

applied at query

time rather than

when the data is

initially stored

Lambda

Architecture

Data processing

architecture

which supports

large amounts of

data via a speed

layer, batch layer,

and serving layer

Recommended Resources

Read

First

Read

Second

Blog: sqlchick.com

Twitter: @sqlchick

Thank You for Attending

Creative Commons License:

Attribution-NonCommercial-NoDerivative Works 3.0

To download a copy of this presentation:

SQLChick.com “Presentations & Downloads” page

Melissa Coates
BI Architect, SentryOne

sentryone.com

